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1

In the present work our attention is paid primarily to continuous func
tions and their classical trigonometrical Fourier series, though we shaH also
prove some more general theorems. Let us denote by T the one-dimen
sional torus 1R/2nl', and, for f E L( T), write for its Fourier series

f(x) ~ L: ak cos kx + bk sin kx
k=O

(bo := 0). (1.1 )

The conjugate function J is the function with Fourier series

co

J(x)~ L: bkcoskx+aksinkx
k=O

Put

{

1'
pLn,m) = k-n

1---,
m

k":;;n,

n,,:;;k":;;n+m.

(1.2)

* The results of this paper were announced at the Banach Center in April 1986.
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(1.4)

(1.5)

The partial sums, the Fejer means, and the de la Vallee Poussin means of
fare

n

Sn(f)(x) = L Ak(x)
k~O

1n-1 n( k)
O"n(f)(X)=~k~O Sk(f)(X) = k~O 1-~ Ak(x),

1 n+m-l
Vn,m(f)(x) = m L Sk(f)(X)

k~n

n+m n n+m
=--O"n+m(f)(x)--O"n(f)(x)= L pin,m)Ak(x).

m m k=O

For various subspaces of C(T) many results are known concerning the
uniform convergence of Fourier series. But in general, Fourier series will
not converge (in the natural sense of convergence in C(T), that is, uniformly).
The subspace of functions having uniformly convergent expansion (1.1) is
not a nice subspace in C(T). For example, there are examples of Salem
[13] and Kahane and Katznelson [5] that Sn(lfl) or Sn(P) may diverge
though Sn(f) -4 f uniformly. The only positive result with unrestricted
generality is a strange-looking result of Mensov [7], asserting that every
f E C(T) can be decomposed as f = fl + f2 so that there exist some nX) -4 00

(i=1,2) for which Snu1(f)-4f uniformly in T (i=1,2). However, the
subsequences nX) of N ~re different in general.

Of course, a.e. convergence follows from the theorem of Carleson [2],
but Mensov [7] showed that there is a fE C(T) for which for any given
nk -400, Snk(f)(xO) diverges for some Xo (depending on f and nd. This
excludes the everywhere pointwise, and so also the uniform convergence of
any subsequence of the partial sums. B'y a certain delicate construction on
the basis of Fejer's example, Busko [1] showed that for each
w(n) = o(log n) there exists some f E C(T) so that

I/ Sn(f) II 00

w(n) -400.

Since for f E C(T), II Sn(f)[l 00 = o( II Snil), where Sn is the nth partial sum
operator, and its usual operator norm liSnil = (4/n) log n + O( 1) (see [10,
p. 67]), this result of Busko is sharp.

With these negative results in mind, we investigate rearrangements. For
a permutation or rearrangement v: N +-+ N, write

00

f(x) ~ L AV(k)(X).
k=O

( 1.6)
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The corresponding partial sums will be denoted by vSn(f)(x), or in short
vSn' Note that vSn as an operator has norm

(1.7)

by the solution of a famous problem of Littlewood (see the independent
proofs [4, 6J). This means that by rearrangement we can gain nothing
regarding the operator norm.

Observe that (1.7) implies via elementary calculations or the Banach
Steinhaus theorem that for any universally prescribed rearrangement v and
subsequence nk~ 00 there exists an fE C(T) such that vSnk(f) diverges to
an extent similar to (1.5). That is, we have

This means that something must depend on f
The second question would be to find a universal v and for all f E C(

an nk(f) with vSnk(f) ~ f uniformly. Though the constructions of Busko
and Mensov cannot be trivially transplanted to the case of (1.6), we doubt
the possibility of finding such a universal rearrangement.

So we can only hope to prove that for all f E C(T) there exists a v with
Sn(f) ~ f uniformly, which is formulated in Section 4 as a conjecture.

On the way to deciding this problem, we have the following result.

THEOREM 1. For any fE C(T) there exist some v and nk (both depending
on f) such that v Snk(f) ~ f uniformly in T.

As for the proof of this theorem, the key part of that and of the whole
paper, as well, is Lemma 2. It uses a rather elementary probabilistic
construction to find a block of the wanted v. The underlying idea could be
interpreted as a simulation of the nice, convergent, and positive method of
(C, 1) summation by constructing appropriate blocks of v.

In proving Theorem 1, we prove Theorem 2 in Section 2, which enables
us to deduce a somewhat curious theorem concerning the speed of
approximation by vSnk(f). Theorem 3 in Section 5 means that for "weakly
continuous" functions, i.e., which have a relatively large modulus of
continuity, our method of rearrangement gives in some sense the best
approximation.

Section 6 is devoted to technical strengthenings of Theorem 1. We can
prove several relations concerning the "smoothness"of the permutation,
the "slow increase" of nk> and an estimate from below of the number of nk
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with nk ~ x. Further, we show that the only good thing we had in the
original case, i.e., the a.e. convergence of the series (1.1), can be preserved
for (1.6) in addition to the uniform convergence of vSnk(f) to f

In Section 7 we deduce some results which show that rearranging a
Fourier series has some positivity properties. Several theorems could be
formulated concerning local behaviour, but we mention only one, just in
connection with this positivity character. Our Theorem 7 is to be compared
to Gibbs' phenomenon, as formulated, e.g., in [10, Vol. I, p.61].

Last, we apply our results to the solution of a certain extremal problem,
in Section 8. It shows very clearly the connection to Gibbs' phenomenon,
but it is not only a mere illustration. It emerged in [8J, in connection with
a certain problem of analytic number theory concerning prime distribution
and the Riemann zeta function, and the solution has interesting conse
quences.

The main idea of the present work can be applied to more general situa
tions, such as d-dimensional periodic functions, uniformly almost periodic
functions [9J, or Fourier series of general orthonormal systems. We return
to these elsewhere.

2

In the introduction we formulated. our Theorem 1. Since C(T) c L 2( T)
and Vn,n(f) -4 f uniformly for fE C(T), Theorem 1 follows immediately
from the following

THEOREM 2. Let fEL 2(T). We can find sequences nk~Nk~2nk-4 00

and a permutation v for which

v(j) E [j12, 2jJ

and

Proof of Theorem 2. Introduce the notation

(2.1 )

(2.2)

(2.3 )

where ak , bk are the coefficients in (1.1). For proving Theorem 2, we need
the following lemma, which, however, will be used later, too.
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LEMMA 1. Let fEL(T) have Fourier series (1.1) with the property that
for some lJ(k) > 0

nk+mk

log nk L cJ ~ lJ(k)
j= nk + 1

(kE N) (2.4 )

hold with nb mk E N, m k~ nk < nk+ m k~ nk + 1 (cj is defined in (2.3 n. Then
there exist a rearrangement v and a sequence of natural numbets
N k E [nb nk + mkJ for which we have

and

j E (n k , nk + mkJ ~ v(j) E (n b nk +md,

j E (nk + mb nk+ IJ => v(j) = j,
(2.5)

(kE N). (2.6)

First of all, let us deduce Theorem 2 from this lemma. According to
Lemma 1, it suffices to find a sequence nk -400 with

2nk

log nk L
j~ nk + 1

2 1
c~: lJ(k).
} 64 log log nk

If it does not work, then for n > no we must have

2n 1
L c2 > .

j~n+l j 6410gnloglogn'

consequently by f EL 2( T) and the above inequality

00 CD 2/+ lno

00 > 2:: CJ = L L cJ
no + 1 I~ 0 j ~ 21no + 1

00 1
>2:: '

I~ 1 64(log nO + l)(log no + log I)

a contradiction in view of the divergence of L (liog l) -1. For proving
Lemma 1, the essential part is

LEMMA 2. Let IJ > 0, m, n EN, be arbitrary with 5 < n, m ~ n, and
fE L(T). If

(2.7)
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then there exists some 0-1 sequence OJ = (OJ I' ... , OJm ) in {O, 1} m for which

(2.8)

We postpone the proof of Lemma 2 to the next section, but prove that
Lemma 1 follows from Lemma 2. Indeed, in Lemma 2 take n = nk> m = mk>
Yf = Yf(k). Define M k := OJ I + ... + OJ m for a 0-1 sequence OJ provided by
Lemma 2. For any v: N +--* N satisfying (2.5) and

mk

vSN/f) = Snk(f) +L OJiAnHi ·
I

Now (2.8) is just identical with (2.6) in view of (2.10).

3

We begin with two propositions.

(2.9)

(2.10)

PROPOSITION 1 (Bernstein's Inequality). Let X be any random variable,
s > 0 and A> 0 any parameters. With P denoting probability and E expecta
tion we have then

Proof For any random variable Y trivially

P(Y~s)=e-eAf .eeAdP
{Y;' e}

::;;e-eA I en dP::;;e-eAE(eAY).
(Y;' e)

Applying this to Y = X - E(X) and Y = E(X) - X together gives Proposi
tion 1.

PROPOSITION 2. For any Z E C and 0::;; a::;; 1 we have

lae(l-a)Z + (1- a)e-aZI ::;; e 1z12•
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Proof For Iz[ > 1 this is trivial; otherwise the Taylor series expansion
of e(l a)z and e- az gives with some [rjl < 1 (j= 1, 2)

[ae(l-a)z + (1- a) e- az [

I {
(l-a)2z2 e(1-a)3 z3i

= a 1+(I-a)z+ 2 +rl 6 j

{
a2z2 ea3z31I

+ (I-a) l-az+T+ r2-6-j

(l-a)a e
~ 1 + 2 Iz[2 + 6" Izl 2

~ 1+ Izl 2 ~ e 1z12
•

Proof of Lemma 2. Let us write

and for A c Q with the weights (1.3),

(3.1)

P(A):= L P(w),
WEA

m

P(w) := TI Pk(Wk),
k~l

(3.2)

It is plain that (Q, d, P) is a probability space, and it suffices to show that
the probability of the "event" (2.8) is positive. At first we establish some
properties of this probability space. By the definition (3.2) the coordinate
projections

are totally independent random variables, and so for any fixed x E T even
the random variables

Yk(X, ): Q ---+ IR,

Yk(x, w) := WkAn +k(X) = Xk(w) An +k(X)

are independent. The sum of these independent random variables is

m m

F(x, ):= L Yk(x,) = L: XkAn+k(x),
k~ 1 k~1
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and the expectation of this sum is

m

E(x) := E(F(x, » = L PkAn+k(x)
k~l

(3.5)

This means that all that we have to do is estimate the deviation of F(x, )
from its expectation (3.5) and prove that this difference is uniformly small
with a positive probability.

For any fixed x E T and for any parameters e> 0, ..i> 0 we get by
Bernstein's inequality (Proposition 1) that

P(IF(x, )-E(x)1 ~e)

:::;; e- A8 { E(eA(F(x,)-E(x») + E(eA(E(x)~F(X, ))}. (3.6)

Since F(x, ) is a sum of the independent variables (3.3) these expressions
can be decomposed, and by means of Proposition 2 with z = ..iAn+k(x) and
a = Pk, they can be estimated as well. We get

m
E(eA(F(X, )-E(x») = n E(eA(Yk(X, )~E(Yk(X, »)

k=l
m

= n {Pk e(l-Pk)AAn+k(X)+(l_Pk)e- Pk ),An +k(x)}
k~l

m m:::;; n eA2A~+k(X):::;; n eA2c~+k = eA2L:.k~1 C~+k < eA2~/logn, (3.7)
k~ 1 k= 1

and similarly

(3.8)

so from (3.6), (3.7), and (3.8)

P( IF(x, ) - E(x)1 ~ e):::;; 2 exp(..i217/log n - d). (3.9)

For any finite point set

{x,: 1= 1, ..., L} (c T)

it follows from (3.9) trivially that

(3.10)

P(IF(x" )-E(x,)1 <e(l= 1, ..., L»
~ 1 - 2L exp(..i217/log n - d). (3.11)
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Fixing the parameters as

109

L= 13n, Pc = (log n)/~, (3.12)

and calling an WE Q "good" if it satisfies the left of (3.11), we infer for n > 5
that

P(W is good) ~ 1- 26n exp(log n - 4 log n)

=1-26n- 2 >O. (3.13)

The only thing to do now is choose the nodes in (3.10) so as to guarantee
that for any good WE Q even (2.8) is satisfied. This can be done by taking
equidistant nodes x, = 2nl/L (l = 1, ..., L). Really, by Bernstein's well-known
inequality concerning the maximum-norm of a trigonometric polynomial
and its derivative, we get for any WE Q and x E T

IF(x, w) - E(x)1 = IF(x,o' w) - E(x,o)

+r (F'(y, w) - E'(y» dYI'
xlv

~ max IF(x" w) - E(x,)1
l";,,,,;,L

n
+ 13n(n+m)IIF(,w)-Elloo, (3.14)

where x'o is the node closest to x. From m ~ nand (3.14) we get

IIF(,w)-EII00<2 max IF(x"w)-E(xtJl, (3.15)
'~l, ...,L

Recalling the meaning of w being good, (3.15) states by (3.12) that for an
good WEQ

IIF(, w) -Ell 00 <23= 8~ (3.

holds. This and (3.13) prove Lemma 2.

Remark 1. By varying some constants, we can deduce easily in (3.13)
any inequalities with right-hand side 1 - n -a for any a> 0 and n > no(a).

Remark 2. On the other hand, for any single ill E Q, when, say, m =
is even and large, we have

(
(2/1 )(2/1- 1) ..... (/1 + 1))2 1 (2)m

P(w) ~ -,..", -
"" mil 2 e '
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and so there are at least
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1
0( = log2(eI2) = log2 - 1 = 0.43...

good wED.

Remark 3. It can be checked that for any finite set § = {II' ..., fK} of
functions with corresponding Fourier coefficients Ck,j (k = 1, ..., K,
j = 0, 1,2, ... ) as defined in case of f according to (1.1) and (2.3), we have
a common wED in (2.8) whenever (2.7) is true for all the K sequences, i.e.,

n+m 11
"d<- (k= 1, ..., K). (3.17)
L, ,J log n

j~n+1

This is obvious from the fact that (for n > no(K) = j26K instead of n> 5
in the condition of Lemma 2) a repetition of the above proof for k = 1, ..., K
separately gives in place of (3.13)

P (w is good for fk) ~ 1 - 26n- 2> I-11K, (3.18)

and hence

P (w is good for every fk (k = 1, ..., K)) > O. (3.19)

Repeating the argument proving Theorem 1 from Lemma 1, but for
cL -1- ... + C~,j in place of c], we can infer the existence of a common v in
Theorems 1 and 2. We note that this will be the case in all our theorems
below, but we will not check it explicitly. Only in one case, in the proof of
Theorem 4, does one need a further-though simple-trick to obtain this
variant of the theorem. We note that as Remark 5 there. As a result, all of
our theorems are valid for f andJwith common v, etc., wheneverJ is in the
same class (e.g., in the case of Theorem 1 if both f and J are continuous).

4

As we expressed before, we hope for the truth of the following

Conjecture. For any continuous f there exist rearrangements of its
Fourier series uniformly convergent to f

EXAMPLE. The well-known example of Fejer of a continuous function
with divergent Fourier series is

00 1 Sk/2

F(x)= L k2 L
k~ I s~ - Sk!2

5,,",0

s
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This function F satisfies the assertion of the conjecture with

11

Sk <j ~ 3Sk/2

Sd2~j< Sk'

In order to attack the above conjecture, one may start with Theorem 1
and then look for appropriate permutations of the blocks (Nk> N k + 1]
distinctly. A. A. Sahakian kindly called my attention to the fact that the
conjecture would follow immediately from the affirmative solution of the
following

Conjecture'. There exists an absolute constant C such that for all N E N
and trigonometric polynomial T(x)=L~~l A;(x) there is some permuta
tion a of [1, N] for which

max III ±A ,,(i) II ~ ell Til 00'

n~N i=1 100

However, we can prove the converse, i.e., Conjecture' is in fact
equivalent to the foregoing conjecture. Indeed, suppose the existence of
trigonometric polynomials

Nk

Tk= L A;k),
i=1

Let us define

min max II"Sn(Tk)1100>2k. (4.1)
a n~Nk

00 1
f(x) = L P Tk(Mkx),

k~'

(4.2)

where M k are defined by, e.g., M, = 1, M k+ 1 = (NkMd!. Now, if v is any
permutation of N, we have for arbitrary n, h, and y

If y is chosen to be a maximum-point of IvSn(Uk)l, and h=2n/Mk+i> we
get

I
M k + 1 fY+ 2rr/Mk+ 1 I

IlvSn(f)lloo;?;~ Y vSn(Uk)+O

;?;llvSn(Uk)1100-M2TC IlvSn(Uknoo
k+l

(
2TCNkMk)

;?;llvSn(Udlloo 1-
Mk

+,

640/60/1-8
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(' denoting differentiation), whence by (4.2),

In view of (4.1) this last inequality contradicts to the conjecture.
Another equivalent statement can be formulated asserting the existence

of an absolute constant C such that

n

5

for all f E C(T). (4.3 )

Let fE C(T) be given, and denote, as usual, w(f, h) :=
sup{ If(x + t) - f(x)l: x, t E T, It I :( h} as its uniform modulus of continuity
and

En(f) := min {Ilf - PII 00: P(x) = I (ctkcos kx + 13k sin kX)},
k~n

the nth approximation constant for any n EN. These two quantities are
related by

(5.1 )

This means, that if f has a large En(f), then it is not too smooth, and if
f is not smooth enough, i.e., it has large w(f,·), then it can be
approximated relatively slowly. For example, we may call a function f
"weakly continuous", if!

(5.2)

THEOREM 3. Suppose that f E C( T) is weakly continuous in the sense of
(5.2). Then there exists a permutation v satisfying

(5.3 )

1 Such functions exist in abundance, since for any en" 0, en#- 0 there exists a continuous
function with En(f)=en; see [11].
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Proof As is well known, lif - Vn,n(f)ll 00 ~ 4En(f), and so Theorem 2
and (5.2) give with a certain v

II vS NJf) - fll 00 ~ Ilv SNk(f) - VnPk(f) II 00 + 4Enk(f)

':::::'E (f) {4+ (loglog n k)-1/21

"" nk E (!) (
nk • )

~Enk(f){4+ Ijc3 }, (5.4)

proving that the right of (5.3) is at least finite. With a modification of
Theorem 2 by taking e'(n) = O'(log log n) -1/2 in place of (log log n) - 1/2 and
I]'(k) = 0'2j(64 log log nk) in place of I](k) we obtain similarly 4+rJjc3 in
(5.4), so letting 0' ---) 0 (which means a diagonal argument in the construc
tion of v), we are led to

Since Nk can be supposed to be even, and N k ~ 2nb hence
Enk(f)~ENkdf), and we get (5.3).

PROBLEM 3. Can we take vSn(f) instead of vS2n(f) in (5.3)?

PROBLEM 4. What is the situation, when f is a smooth function, e.g., if
for some 0 < IX < 1, fE Lip(IX, oo)? Does vSn(f) approximate f better, or
does the same extra log n factor occur after every rearrangement, too?

6

Similarly to the asymptotic equivalence ~ of sequences, we may intro
duce the notion of "logarithmic equivalence" or "rough equivalence" of
sequences as

(k -) 00). (6.1 )

Note that for taking Sk = tk + l' we obtain the notion of "slowly increasing
sequence" in the sense of Karamata. Using this notation, the following
theorem can be formulated.

THEOREM 4. Let f E L 2( T). Then there exist some permutation n: N +--> N
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satisfying (2.1), and some slowly increasing sequences nk :'( N k :'( 2nk --+ co,
such that uniformly in T

and

(6.2)

for a.a. x E T. (6.3 )

Proof Our permutation will be defined as the composition of two
others,

n :=(JoV. (6.4 )

The first, v, provides (6.2) similarly to the preceding theorems, while the
second is to give even (6.3), too.

LEMMA 3. Let dj ~ 0 be given with L dj < co. Then there exist lJ(k) --+ 0
and a slowly increasing nk --+ co with nk+ 1 ~ 2nk such that

Proof of Lemma 3.

2nk

log nk L dj < lJ(k)
nk+ 1

(k EN). (6.5)

Now for any fixed A> 1 in case of nk+ 1> nt we obtain

(6.6)

00 [log2(nk + lind] - 1

1]2(k+ 1) = I dj~ I
2nk+1 l~l

log(nk+ link) lJ(k + 1)
> I I

l~l log(2n k )

21+ Ink

I dj
21nk + 1

(6.7)
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Clearly this is a contradiction for large k by y/(k) ~ 0, so for k > ko(A),
nk+ 1 ~ nt, whence nk is slowly increasing, and by definition it satisfies
(6.5), too.

Remark 4. If we do not want to have a slowly increasing nk , then the
argument in Section 2 proving Theorem 2 may replace Lemma 3.

Now turning to the construction of v, we apply with dj = cJ the above
Lemma 3. So we get a slowly increasing nk ~ 00 with 2nk ~ nk+ 1, and a
sequence I](k)-'>O, for which (6.5) holds. Choosing mk=nk in (2.4), (6.5)
is just identical with it, and so Lemma 1 gives a v and some N k satisfying
nk~ Nk~ 2nk with (2.6) (for mk = nd and so

uniformly in T (6.8 )

follows. Moreover, here nk and N k satisfy all that we need, and v is subject
to the conditions (2.5).

We want to define a (J possessing the properties

and

j E (nb N k] <0> (J(j) E (n b NkJ

j E (Nk, 2nk ) <0> (J(j) E (Nb 2nk)'

If (J is such, then (2.5) with mk =nk and (6.9) give

jE [2nk, nk+ IJ =;. n(j) = j,

(6.9)

(6.10)

(6.11 )

and so n satisfies (with n in place of v) (2.1), as stated. Further, (6.4), (6.8),
and (6.10) lead to (6.2) at once. So the only thing to do is to define a (J
subject to (6.9) and (6.10) and giving (6.3). We define the set

H:= {nE N: 3kE N, n=Nk or nE [2n b nk+l]}' (6.

SincefEL2(T), Carleson's theorem states Sn(f)(x)~f(x) for a.a. XET.
Combining this with (6.4), (6.8), (6.10), (6.11), and (6.12) we obtain,
numbering H in increasing order as hb that

Define

for a.a. x E T. 3)

(6.14)
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then rP = {rPj: j EN} is an ONS in L 2( T), and the Fourier series of f with
respect to rP is just

(6.15 )
j

Now by (6.13), (6.14), and (6.15) we have

j

st(f)(x) ~ f(x) for a.a. x E T. (6.16)

By the definition of H in (6.12), our requirements (6.9) and (6.10) are
identical with

(6.17)

and

(6.18 )

At this point we may forget all the antecedents and concentrate on the
problem as if we knew only that rP is an ONS and fEL 2(T, dx) with
Fourier series (6.15) and satisfying, for a certain hk ? 00, (6.16). This is
just the general situation in which Garsia's theorem concerning a.e.
convergent rearrangements of Fourier series was proved. In fact, Garsia
proves a general inequality (see (3.6.16) in [3J), asserting in our setting
that for a certain absolute constant C we have

(h l_ h )' L f m.ax (f C,,(k)(j) rP"(k)(jl)

2

k+! k' ,,(k): (hk,hk+lJ ~ (hk,hk+lJ T hk<m'-;'hk+l j~hk+!

hk+l

~ C I CJ.
j~hk+ !

We note that in Garsia's notation our a(kl corresponds to a, hk +! -hk and
m correspond to n and v, L 2( T, dx) corresponds to L 2(Q! dJi), Cj

corresponds to Gj-hk' and rPj to rPj-hk' In view of Garsia's inequality we can
select for each k a permutation a(k) satisfying (6.18) so that

Summing up these inequalities for k = 1, 2, ..., f E L 2, Beppo Levi's theorem
and (6.16) entail that the permutation a in (6.17) will satisfy

"Sj(f)(x) ~ f(x) for a.a. x E T.

This and (6.14)-(6.18) ensure our statement (6.3) with n defined in (6.4).
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Remark 5. If we have a finite set {fl' ..., f K} of functions belonging to
L 2( T), we can find a common n to them. Indeed, in view of Remark 3 we
have to find a common (J only. But for the new function

F(x) := fAx - 2kn) (k = [;nJ) x E [0, 2Kn)

and the new ONS

a similar application of Garsia's theorem suffices. In particular we have in
Theorem 4 the analogues of (6.2) and (6.3) for J (the conjugate ofn, too,
since JE L 2( T).

Remark 6. By sacrificingjj2 ~ n(j) ~ 2j and requiring only n(j) N j, we
may apply a further permutation rafter (J 0 v with

Using this r we may push the terms Ak(x) with little coefficients to the
beginning of each block (Nb N k + 1 ], and, since rrovSNk(f) is close to
VIlk,llk(f), we can fatten the set of indices for which "Si/f) is close to some
VVJ(f). In this way it can be proved that uniformly in T

1< S i/f) - VV/f) --+ 0

and also 1< SifHx) --+ f( x) for a.a. x E T, where

L 1>.j;:.
~;<X

THEOREM 5. For any fE qT) there exist a rearrangement n satisfying

n(j) ~ j

and a slowly increasing sequence N k ,l' CfJ, such that

uniformly in T

and

for a.a. x E T.

Proof We choose an mk < nk instead of mk = nk such that mdnk --+ 0
but Vllk.mJf) --+ f uniformly in T. This can be done, since for any n,m EN

(6.19 )
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as is well known (see, e.g., [12, pp. 34-35]), and from this point on the
proof is identical with that of Theorem 4. Since here nd(nk + mk):(
TC(j)/j:((nk+mk)/nk> instead of (2.1) we obtain TC(j)/j~ 1.

7

LEMMA 4. Let f E L 2( T). Then there exist a rearrangement TC and sequen

ces nk> mk, Nk~oo satisfying nk:(Nk:(nk+mk<nk+l and mk/nk~oo,

for which (6.3) and

hold.

(uniformly in T) (7.1 )

Proof We can prove this lemma similarly to Theorem 4, if we start
instead of Lemma 3 with

LEMMA 5. Let dj ~ 0 be given with L dj < 00. Then there exist
mk> nk~ 00 with mk/nk ~ 00, nk + 1~ nk + mk and l1(k) ~ 0 such that nk is
slowly increasing, and

nk + mk

log(nk+mk) L dj <l1(k)
nk+ 1

(kE N). (7.2)

Proof One may define L k := (nk + mk)/nk and use calculations similar
to those in the proof of Lemma 3 (with L k in place of 2). For sufficiently
slow L k ~ 00 we arrive at the contradiction

11 2(k+l»I1(k+1)IOg( lognk+l )
log L k log nk + log L k

l1(k + 1) I ( A log L k)> og A - ,
log L k log nk

supposing that nk+ 1> n:.

THEOREM 6. Let f E L 00 (T). Then there exist a rearrangement v and a
sequence N k~ 00 for which

and

vSifHx) ~ f(x) for a.a. XE T (7.3 )

II v SNk(f) 1100 :( (1 + o( 1)) Ilfll 00· (7.4 )
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Proof By the positivity of the Fejer kernel, we have by (1.4)
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(7.5)

Applying Lemma 4 and so nk/mk -> 0 we obtain the theorem.

THEOREM 7. Suppose that fEL 2(T) and for some XoE T, f has a jump
(i.e., f( Xo+ 0) and f( Xo - 0) exist but differ). Then there exist some permuta
tion TC and a sequence N k -> 00, such that for any I: > 0 there exist
b = 6(1:) > 0 and ko= k o(1:) > 0 with the property that for k> k o

max I"SN/f)(X)!
Ix-xol ,;;b

~(l+l:)max{lf(xo+O)I,If(xo-O)j}. (7.6)

Proof We use a localization argument. By the well-known properties of
the Fejer kernel, (7.5) can be changed to

max IVn m(f)(x)1
[x- xol ,;; b •

~ (1 + 2 .::)( max If(x)j + £~. f Ifl). (7.7)
m Ix - xol ,;;bUn T

Using Lemma 4 and (7.7) we can deduce (7.6) easily.

8

In the work [8], from a certain problem of analytic number theory we
were led to the following extremal problem. Determine C, C, and C*,
where

(8.1 )
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and

C= lim C(n),
n~oo

C' = lim C'(n), C* = lim C*(n).
n~oo

(8.2)

(8.3 )(L ~ Cf).

Trivially, the sequences (8.1) are nonincreasing, and so the limits in (8.2)
exist. Further, since C*(n) ~ C'(2n) ~ C(2n), we have C* ~ C' ~ C.
Obviously, for any T in the definition of C(n)

J~ T(x) sin x dx n
II Til 00 ~ JL I' I d ~-4o smx x

On the other hand, for

._ ~ sin(2k - 1)x
f(x).- 1... 2k-l

k=l

(8.4)

we have

f(x) = (n/4) sgn x (sgn x := (-1 ) [x/n]), Ilflloo = n/4, (8.5)

so for infinite sums C*( (0) = n/4. However, for the partial sums

(f ( )
= ~ sin(2k-l)x

Sn ) x 1... 2k-l
k=l

(8.6)

we have only

1 fn sin t nIISn(f)lloo ~- -dt = 0.92... >-=0.78...,
2 0 t 4

which is a characteristic example of Gibbs' phenomenon. So summing up
these obvious considerations would only give

0.93... ~ C* ~ C' ~ C~ nj4. (8.7)

The reason for the gap is just Gibbs' phenomenon, and that is what makes
the problem nontrivial. However, by the present method we could solve the
problem in [8], proving

THEOREM 8. C* = C' = C = n/4.

Proof Knowing (8.7), it suffices to show C*:%;; n/4. Applying Theorem 6
to the function (8.5) with Fourier series (8.4), we are ready.
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